Since the foundation of EMTA in 1974, EMTA has kept its development process, considering his responsibilities and missions about being one of the esteemed and respectful companies in the energy generation, distribution and transmission sector. As of this day, our activities are carried out by EMTA Manufacturing, Contracting and Trading Subsidiaries, which were founded by taking into consideration of sector needs and which are expert on their business fields, aiming to provide our esteemed customer the highest quality services. EMTA ENERGY provides end to end turnkey solutions for turbine island, boiler house, environmental systems, electrical balance of plant (e-BoP) and mechanical balance of plant (m-BoP) packages of medium and large size power generation plants. EMTA, which is one of the leading companies of Turkish Energy Market as the preferred and prequalified supplier of governmental and major private sector investors in Turkey, has also completed EPC Projects in Algeria, Canada, Iraq, Kazakhstan, Libya, Kingdom of Saudi Arabia and Turkmenistan. Company aims to keep its leading position in Turkish Market and enlarge its business portfolio in the focused foreign markets. EMTA CABLE & CONDUCTOR having a factory in Kadirli Industrial Zone in Osmaniye/ Turkey with 72,000 metric ton annual production capacity is one of the major aluminum conductor and cable production units in Europe and Middle East. EMTA TRADING Companies which are material dealer and trading companies for local and global markets, are responsible from sales and marketing operations of the products under production from their sister companies and solution partners. Differently from its competitors, our companies provide engineering-support in order to simplify customers' technical needs. Since its establishment, EMTA has transformed itself into EMTA Group of Companies that serves the needs of customers in many countries in 5 continents. In addition to Turkish market, the markets that the company focused on are Middle East, North Africa, North America and CIS countries' power generation, transmission and distribution markets. EMTA has established its own overseas companies or branch offices in Dammam/ KSA, Abu Dhabi/ UAE, Erbil/Iraq, Tripoli/ Libya and Vancouver/ Canada in order to increase the number of its own direct contacts in the focused markets.
YOUR SOLUTION PARTNER IN POWER GENERATION
TRANSMISSION & DISTRIBUTION
OVER 40 YEARS, EMTA HAS OPERATED TO BECOME A REPUTABLE GROUP OF COMPANIES WITHIN THE DOMESTIC AND INTERNATIONAL POWER GENERATION & TRANSMISSION & DISTRIBUTION MARKETS WITH ITS OWN STRONG FINANCIAL STRUCTURE AND SPECIALIST WORKFORCE.
EMTA VISION & PHILOSOPHY

A multi-national firm with broad vision, which raise its own managers and administrators from within; constructive, tech-savvy and reformist, thus, have international reputation and credibility.

A proud company that aims to prosper its employees to expand itself, quick on the draw and innovative by establishing new companies in developing countries.

EMTA targets to become and remain as one of the leading power generation companies and values the needs of our planet which are crucial initiatives for humanity.
SINCE ITS FOUNDATION, EMTA IS FOCUSED ON ENGINEERING A SUSTAINABLE FUTURE; OPERATING OUT OF PURPOSE-BUILT PREMISES IN TURKEY. ADDING TO THIS, WITH EXCELLENT INTERNATIONAL TRANSPORT LINKS TO REFLECT OUR GLOBAL CLIENT BASE, EMTA PROVIDES INNOVATIVE DESIGN AND PROJECT MANAGEMENT SOLUTIONS TO A GLOBAL CLIENT BASE IN A VARIETY OF PROCESS AND ENERGY INDUSTRIES. EMTA HAS MASTERCED THE LATEST TECHNOLOGIES, CODES AND WORKPLACE SAFETY STANDARDS WITH THE ADVANTAGES OF LOCAL KNOWHOW AND NETWORKING.
RIGHT TIME
RIGHT PLACE
RIGHT JOB
EMTA ENERGY
Attains the highest level of customer satisfaction and loyalty.

EMTA ENERGY
Ensures the satisfaction of all employees and continuous improvement of their knowledge, awareness and competence.

EMTA ENERGY
Adopts the term “Quality” as a life style in all processes, products and services.

EMTA ENERGY
EMTA ENERGY believes in the philosophy of “right time, right place & right job.”
EMTA ENERGY’S STRENGTHS & FIELDS OF ACTIVITY

POWER GENERATION

EMTA Energy is a major actor in the power generation business for demanding customers in Turkey and neighboring countries. With high efficiency and availability, our experiences and services set the pace for the generation market. EMTA Energy is a full-service provider of detailed design-build services, full EPC (engineer, procure, construct) services and rehabilitation of existing plants. Our comprehensive strengths and field activity caters for a wide array of power plant equipment, from key areas like distributed control systems (DCS) to key components like exciters, turbogenerators, turbines, fuel supply systems and associated instrumentation and control units. EMTA Energy’s teams of specialists have ultimate expertise in a large variety of applications, be it fossil fuel-fired power plants, hydro plants or wind farms.

EMTA has built a strong reputation for excellence in the following:

- Turbines & Generators
- Exciters, AVR, Governing systems & Auxiliaries
- DCS, Automation, Control & Protection System
- Balance of Plant Electrical systems.
- Civil Construction Works.

POWER TRANSMISSION & DISTRIBUTION

EMTA offers complete project services for overhead or underground transmission lines and substations up to 750 kV.

EMTA Energy’s T&D Services are as follows:

- All Engineering Works and Design
- Manufacturing of Steel Structure & Aluminum Conductors, Earthing Steel Wires; Hardware & Fittings.
- Procurement of HV/MV/LV Equipment.
- Civil, Erection and Installation Works.
- Test & Commissioning.
GAS POWER PLANT PROJECTS

- DENIZLI COMBINED CYCLE POWER PLANT
- ERBIL COMBINED CYCLE POWER PLANT
- SULEIMANIAH COMBINED CYCLE POWER PLANT
- F’KIRINA & M’SILA MOBILE GAS POWER STATION
- BANDIRMA COMBINED CYCLE POWER PLANT
DENIZLI 775 MW COMBINED CYCLE POWER PLANT
Denizli Combined Cycle Power Plant

Last Client / RWE & TURCAS GÖNEY ELEKTRİK ÜRETİM A.Ş., METAL CONSTRUCTIONS OF GREECE S.A. (METKA)
Capacity / 775 MW
Location / Denizli, Turkey
Scope of Work / Plant Engineering (eBOP), Transmission and Distribution Systems

Denizli Natural Gas Combined Cycle Plant is connected to the national electricity grid system with an approximately 211 km total length of 380 kV Overhead Transmission Lines established between Denizli Natural Gas Combined Cycle Plant Switchyard and Denizli II, Afyon and Denizli IV Substations.

Denizli II Substation - Denizli Natural Gas Combined Cycle Plant Switchyard = 13 km,
Afyon Substation - Denizli Natural Gas Combined Cycle Plant Switchyard = 180 km,
Denizli IV Substation - Denizli Natural Gas Combined Cycle Plant Switchyard = 18 km
The city of Denizli has abundant natural water spring and many beautiful ponds; and thanks to the similarities of its water sources to sea water, this province is called Denizli. Ottoman traveler Evliya Çelebi in his book of travels “Seyahatname” stated the city as ‘Kesir-i tülenha olmağula Denizli’. Meaning that it was called Denizli because of its abundant water supply. In the course of time, Tonguzlu was called Dengiz and later designated Denizli. Former name of the city was Laodikeia.
ERBIL, IRAQ
1500 MW COMBINED CYCLE POWER PLANT
Erbil Combined Cycle Power Plant

Located in the south of Erbil governorate, about 22 Kilometers from Erbil city center, the Erbil Gas Power Station (EGPS) occupies around 750,000 m² and has eight gas turbines and four steam turbines, with their generators and auxiliaries to provide a total output of 1500 MW.

Last Client / MASS GROUP HOLDING
Capacity / 1500 MW
Location / Erbil, Iraq
Scope of Work / Plant Engineering (eBOP), Transmission and Distribution Systems
SULEIMANIAH, IRAQ
1500 MW COMBINED CYCLE POWER PLANT
Suleimaniah Combined Cycle Power Plant

Suleimaniah Gas Power Plant is connected to the national electricity grid system with an approximately 502 km total length of 132 kV Energy Transmission Lines established between South Suleimaniah Substation, Rizgary Substation, Bakrajw Substation, Zargata Substation, Tasluja Substation, and Chamchamal Substation.

- South Suleimaniah Substation – Suleimaniah Gas Power Plant Switchyard= 2 X 70.7 km
- Rizgary Substation – Suleimaniah Gas Power Plant Switchyard= 1 X 58 km
- Bakrajw Substation – Suleimaniah Gas Power Plant Switchyard= 3 X 52.2 km
- Zargata Substation – Suleimaniah Gas Power Plant Switchyard= 2 X 20 km
- Tasluja Substation – Suleimaniah Gas Power Plant Switchyard= 2 X 62.2 km
- Chamchamal Substation – Suleimaniah Gas Power Plant Switchyard= 2 X 10.8 km

Last Client / MASS GROUP HOLDING
Capacity / 1500 MW
Location / Suleimaniah, Iraq
Scope of Work / Plant Engineering (eBOP), Transmission and Distribution Systems
F’KIRINA & M’SILA
ALGERIA
481MW MOBILE GAS POWER STATION
Total Power Output
M’Silia Mobile Gas Power Station is connected to the national electricity grid system with approximately 700 km total length of 220 kV Energy Transmission Lines established. This power station is connected to Elhamel and Barika & Biskra Substations and other 4 substations.

Elhamel Substation
ACC/ BIGH/ SAB/ BBA Substations
M’Silia Power Station Switchyard= 75 km
ACC/ BIGH/ SAB/ BBA Substations
M’Silia Power Station Switchyard= 345 km
M’Silia Power Station Switchyard
Biskra Substation = 162 km
M’Silia Power Station Switchyard
Biskra Substation = 108 km

F’Kirina & M’Silia Mobile Gas Power Station

Last Client / LA SOCIETE ALGERIENNE / GE & METAL CONSTRUCTIONS OF GREECE S.A. (METKA)
Capacity / 481 MW (Total Power Output)
Location / F’Kirina - M’sila, Algeria
Scope of Work / Plant Engineering (eBOP), Transmission and Distribution Systems

GAS POWER PLANT
People's Democratic Republic of Algeria is “Tagduda Tadzayrt Tamagdayt Tayerfant” in Berber language. Berber people are an ethnic group indigenous to North Africa west of the Nile Valley. They are distributed from the Atlantic Ocean to the Sīwa Oasis in Egypt, and from the Mediterranean Sea to the Niger River. Historically they spoke Berber languages, which together form the “Berber branch” of the Afro-Asiatic language family. Since the Muslim conquest of North Africa in the 7th century, a large portion of Berbers have spoken varieties of Maghribi Arabic. Foreign languages like French and Spanish, inherited from former European colonial powers, are used by most educated Berbers in Algeria, Morocco, and Tunisia in some formal contexts such as higher education or business. Today, most Berber-speaking people live in Algeria and Morocco. Smaller Berber-speaking populations are scattered throughout Tunisia, Libya, Mauritania, Mali, and Niger, as well as large migrant communities living in Europe.
BANDIRMA GAS POWER STATION
930MW
Bandırma Gas Power Station

Last Client / ENERJİSA ENERJİ ÜRETİM A.Ş. (ENERJİSA – E.ON)
Capacity / 930 MW
Location / Bandırma, Balıkesir, Turkey
Scope of Work / Transmission and Distribution Systems

Bandırma Gas Power Station is connected to the national electricity grid system with an approximately 180 km total length of 380 kv Energy Transmission Lines established between Karabiga and Bursa Substations.

Karabiga Substation – Existing Bursa Enerji Transmission Line = 174 km
Bandırma Gas Power Plant Switchyard – Existing Karabiga/Bursa ETL = 6 km
THERMAL POWER PLANT PROJECTS

- BAADRE THERMAL POWER PLANT
- YUNUS EMRE THERMAL POWER PLANT
- İZDEMİR THERMAL POWER PLANT
Last Client / DIYAR POLTEKS ENERGY LTD. CO.
Capacity / 150 MW
Location / Baadre, Duhok, Iraq

Scope of Work /

Baadre Phase 1
Procurement, Design, Manufacture, Inspection, Testing, Delivery, Installation, Commissioning Of Heavy Fuel Oil (Hfo) Fired 150 MW Power Plant In Turnkey Basis.

Baadre Phase 2
Rehabilitation And Development Of Existing Baadre DIYAR Polteks Power Plant’s Turbogenerator And Turbine With A Base Load Capacity Of 150 MW And Construction Of New Fuel Tanks For The Unit In Turnkey Basis.
YUNUS EMRE COAL-FIRED POWER PLANT
270MW
Yunus Emre Thermal Power Plant

Last Client / ADULARYA ENERJİ ELEKTRİK ÜRETİMİ VE MADENCİLİK A.Ş.
VITKOVICE POWER ENGINEERING
Capacity / 270 MW
Location / Eskişehir, Turkey
Scope of Work / Transmission and Distribution Systems

Yunus Emre Thermal Power Plant is connected to the national electricity grid system with approximately 250 km total length of 240 kV Energy Transmission Lines established between Adapazarı and Temelli Substations.

Adapazarı Substation – Temelli Substation = 235 km
Yunus Emre Thermal Power Plant Switchyard – Existing Adapazarı/Temelli ETL= 15 km
Yunus Emre Adularya / Beypazarı: Befitting its name, Living Museum (Yaşayan Müze) is a special project where cultural heritage is kept alive. The building is one of the historical Beypazarı mansions, Abbaszade Mansion. Built in the 19th century, this mansion has typical characteristics of Beypazarı houses. After the Municipality restored, the project of "practical museum" sprang to life in this particular building. Like in many historic Beypazarı mansions, there is the section of "hayat" (life) at the entry, "çardak" (pergola) in the middle floor and "gushana" in the top floor. The ground floor has the areas such as kitchen, cellar, pantry. The practice of "Nazar" (evil eye) moved from Central Asia via culture is kept alive in "hayat" section. This specific museum of Beypazarı shall be considered as a model of contribution to cultural progression.

Location / Eskişehir, Turkey
İZDEMİR 350MW THERMAL POWER PLANT

İzdemir Thermal Power Plant is connected to the national electricity grid system with an approximately 75 km total length of 380 kV Energy Transmission Lines established between Aliağa 2 and Uzundere Substations.

Aliağa 2 Substation – Uzundere Substation = 69 km
İzdemir Thermal Power Plant Switchyard - Existing Aliağa 2 / Uzundere ETL = 7 km
İzdemir Thermal Power Plant

Last Client / İZDEMİR ENERJİ ELEKTRİK ÜRETİM A.Ş.
Capacity / 350 MW
Location / İzmir, Turkey
Scope of Work / Transmission and Distribution Systems
WIND FARM PROJECTS

- LODOS KARABURUN WIND FARM
- BANDIRMA III WIND FARM
- VICTORIA ISLAND CAPE SCOTT WIND FARM
Lodos Karaburun Wind Farm is connected to the national electricity grid system with an approximately 16 km total length of 380 kV Energy Transmission Lines established between Karaburun GIS Substation and Lodos Karaburun Wind Farm Switchyard.
Bandırma III
Wind Farm | 24 MW
Bandırma III Wind Farm

Last Client / ASMAKINSAN TEMİZ ENERJİ ELK. ÜRETİM SAN. VE TİC. A.Ş.
Capacity / 24 MW
Location / Balıkesir, Turkey
Description / Transmission and Distribution Systems

An Industrial Wind Turbine has a total average weight of 164 tons; it can vary from 110 to 135 meters of height and its nearly 50 meters-tall blades can sweep more than 1.5 acres of land. Since the end of 2012, there are around 80 wind farms in Turkey. Total capacity of wind power in Turkey reached 2GWs by the first quarter of 2013. China and United States of America all alone own an approximate %50 of the wind world total with a capacity of 135.5 GWs. (2012)
Victoria Island
Cape Scott / Canada
Wind Farm

Last Client / AMEC BLACK & MCDONALD JOINT VENTURE
Capacity / 240 MW
Location / Port Hardy, Victoria Island, British Columbia, Canada
Description / Transmission and Distribution Systems

British Columbia Outdoor Life / Given its varied mountainous terrain and its coasts, lakes, rivers, and forests, British Columbia has long been enjoyed for pursuits like hiking and camping, rock climbing and mountaineering, hunting and fishing. Water sports, both motorized and non-motorized, are enjoyed in many places. Sea kayaking opportunities abound on the British Columbia coast with its fjords. Whitewater rafting and kayaking are popular on many inland rivers. Sailing and sailboarding are widely enjoyed. In winter, cross-country and tele-mark skiing are much enjoyed, and in recent decades high-quality downhill skiing has been developed in the Coast Mountain range and the Rockies, as well as in the southern areas of the Shuswap Highlands and the Columbia Mountains. Snowboarding has mushroomed in popularity since the early 1990s. The 2010 Winter Olympics downhill events were held in Whistler Blackcomb area of the province, while the indoor events were conducted in the Vancouver area.
HYDROELECTRIC POWER PLANT PROJECTS

- MENGİ HYDROELECTRIC POWER PLANT
- KÖPRÜ HYDROELECTRIC POWER PLANT
- YEDİGÖZEN SANİ BEY HYDROELECTRIC POWER PLANT
- AKSU HYDROELECTRIC POWER PLANT
- YEDİGÖL HYDROELECTRIC POWER PLANT
Menge Hydroelectric Power Plant is connected to the national electricity grid system with an approximately 27 km total length of 154 kV Energy Transmission Lines established between Feke and Menge Substations.

Menge & Köprü Hydroelectric Power Plant

Last Client / ENERJİSA ENERJİ ÜRETİM A.Ş. (SABANCI HOLDİNG – E.ON)
Capacity / Menge 85 MW, Köprü 145 MW
Location / Adana, Turkey
Scope of Work / Transmission and Distribution Systems
Ismail Emre, (1900-1970) an Anatolian Sufi and Poet from Adana, did not ever go to school and was illiterate, but he learned to read Arabic letters by himself and was barely able to read the Divans of Yunus Emre. He gradually improved his reading skills. He learned Islamic history, theosophical (tasavvuf) issues and prophetic lives from the wise men around him and partly from books such as Ahmediyye, Muhammediyye, Şahmaran and Kan Kalesi. Emre was only 17 when he met his murshid (teacher) who taught and guided him through his spiritual journey. İsmail Emre’s murshid was Hâli Develioğlu, who was born in Tarsus. As Emre mentions in his memoirs, Hâli Efendi went through all the traditional paths and became “the Ocean of Oneness”. Emre’s poems had great value of theosophy and he recited his poems ceasing in God, and he did not hear the words while he was uttering them. Since he could not control the utterance of these words, Emre called his poems Doğuş (poetical revelations); a kind of saying by losing oneself and penetrating in God with divine inspiration. As a consequence of this, Emre was called the New Yunus Emre in Adana. Emre has nearly 2400 recorded theosophical poems; his conversations were also published in books.

Köprü Hydroelectric Power Plant is connected to the national electricity grid system with an approximate 236 km total length of 154kV Energy Transmission Lines established between Menge HPP and Kozan Substations.

Köprü Hydroelectric Power Plant Switchyard - Menge Hydroelectric Power Plant Switchyard = 15 km
Köprü Hydroelectric Power Plant Switchyard - Kozan Substation = 18 km
Yedigöze Sani Bey Hydroelectric Power Plant is connected to the national electricity grid system with an approximately 37 km total length of 380 kV Energy Transmission Lines established between Adana Substation and Yedigöze Hydroelectric Power Plant Switchyard.
Aksu & Yedigöl Hydroelectric Power Plant

Last Client / YEDİGÖL HİDROELEKTRİK ÜRETİM VE TİC. A.Ş. (BORUSAN-EnBW)
AKSU HİDROELEKTRİK ÜRETİM VE TİC. A.Ş. (BORUSAN - EnBW)

Capacity / Aksu 17.46 MW, Yedigöl 24 MW

Location / Erzurum, Turkey

Scope of Work / Transmission and Distribution Systems

Arif Sağ (born 1945 in Aşkale, Erzurum, Turkey) is a singer, bağlama virtuoso and leading figure in modern Turkish folk music, as well as a former MP in the Turkish parliament, and an academic. He taught more than 40,000 students in his music school ASM (Arif Sağ Music). He is a big influence in Turkish Folk Music. With the initiation of Roman Herzog, then-president of Germany, he gave a concert on 6 May 1996 with Cologne Philharmonic Orchestra.
POWER PLANT REHABILITATION PROJECTS

- ORHANELİ THERMAL POWER PLANT
- SOMA B THERMAL POWER PLANT
- TUNÇBİLEK THERMAL POWER PLANT
- ÇATALAĞZI THERMAL POWER PLANT
The Orhaneli thermal power plant is located 47 km southwest of the city of Bursa. The power plant is situated on the Çaltı plain in the Keceauc Valley surrounded by ridges 500 to 700 m high and close to the town of Karıncalı. The chimney of the power plant is 270 m; its altitude above sea level is 360 m. The lignite used in this power plant contains 1.9% combustible sulfur, 26.52% ash, and 28.52% moisture. The flue-gas desulfurization filter of the power plant, which can reduce the sulfur and ash released from chimneys by 99%, began to operate in 1999. The Boiler of Orhaneli Thermal Power Plant was designed and manufactured by STEINMÜLLER, a Germany firm, and put into operation in 1992. The power plant’s unit consists of 210 MW K210-130 LMZ Steam Turbine and Water / Hydrogen cooled Electrosila Turbogenerator.
The studies for the establishment of units B1 and B2 of Soma Thermal Power Plant began in the year 1967; the preparation of the initial studies of possible plant sites and the alternative plans began in the year 1971. Against the energy bottleneck observed starting from the year 1974, the Ministry of Energy instructed TEK (Turkish Electricity Institution) to build the 2X165 MW section to accelerate the Thermal Plant establishment in planning – project works based on the previously performed studies. With the tender put out in the year 1976, the construction job of the 2X165 MW unit B1 (Unit 1) and B2 (Unit 2) was awarded to the three – consortium consisting of Skodaexport (Czechoslovakia), Metex (Finland) and their local partner company (Turkey). For Soma Thermal Power Plant expansion units B3 (Unit 3) and B4 (Unit 4), signed between TEK and Skodaexport – and their local partner company Consortium partnership on November 12th, 1980. The construction of 2X165 MW expansion units B5 (Unit 5) and B6 (Unit 6) was designed to provide production of electricity from much lower calorie lignite observed in the region. In due course, with a contract signed in September 1986, the construction was initiated by Skoda (Czechoslovakia) and their local partner (Turkey) consortium and completed in 1989.
Total installed capacity of Tunçbilek-Kütahya Thermal Power plant is 365 MW. The coal reserves exist for a new additional capacity of 2x150 MW after privatisation. There are in total 5 units in Tunçbilek Thermal Power plant: 1st and 2nd units were built by Durr Werke Germany in 1956 each with 24 MWe steam turbines by AEG of Germany, however, these units nowadays are out of service. The 3rd unit was constructed by SGP of Austria in 1966 with 65 MWe steam turbine by Elin of Austria. The 4th and 5th units were delivered by Elektrownia of Poland in years 1978-1979 each with 150 MWe steam turbines by KWU of Germany.
Çatalağzı Thermal Power Plant

Last Client / EÜAŞ (Electricity Generation Company)
Capacity / 300 MW
Location / Çatalağzı / Zonguldak, Turkey
Scope of Work / Plant Engineering (eBOP)

The Çatalağzı-B (ÇATES-B) 2x 150 Mwe hard coal fired thermal power plant is situated 15 km east of Zonguldak city center, on Isıkveren area, named after nearby Çatalağzı town. Commercial operation started in October 1991. For turn-key contracting and construction of 150 MW Çatalağzı Thermal Power Plant, a consortium was formed from the following firms: Transelectro as leader, Mitsubishi Heavy Industries (Steam Turbine), Siemens, Etmas (electrical works, instrumentation & controls) and a local contractor for civil engineering, civil works and site installation. Steam generating unit (coal-fired) is manufactured by Ganz-Danubius Boiler and Machinery Works Ltd., Budapest under boiler license of EVT of Germany. Main technical data is as follows; the boiler is single reheat; natural circulation. Rated steam boiler output is 480 tons of steam per hour at MCR. Steam temperature is 535 ºC. Steam pressure is 135/37 bar. Boiler dimensions are 12x12x117 meters. Turbine and auxiliaries are supplied by Mitsubishi Heavy Industries, Nagasaki, Japan. Reaction type condensing steam turbine is installed with sea water condenser and maximum continuous rating of each unit is 157.34 MWe.
INDUSTRIAL PROCESS PROJECTS

- UNDERGROUND NATURAL GAS STORAGE PROJECT
- BAKU-TBILISI-CEYHAN PETROLEUM PIPELINE PROJECT (LOT B)
- ETI SODA BEYPAZARI
- MACHINERY MANUFACTURERS INDUSTRIAL ZONE (MAKINA OSB)
Underground Natural Gas Storage Project
Lake Tuz

Last Client / BOTAS A.Ş. / CHINA TIANCHEN ENGINEERING CO.
Location / Aksaray, Turkey
Scope of Work / Transmission & Distribution Systems
The Baku–Tbilisi–Ceyhan (BTC) pipeline is a 1,768 kilometres (1,099 mi) long crude oil pipeline from the Azeri-Chirag-Guneshli oil field in the Caspian Sea to the Mediterranean Sea. It connects Baku, the capital of Azerbaijan and Ceyhan, a port on the south-eastern Mediterranean coast of Turkey, via Tbilisi, the capital of Georgia. It is the second-longest oil pipeline in the former Soviet Union, after the Druzhba pipeline. The first oil that was pumped from the Baku end of the pipeline on 10 May 2005 reached Ceyhan on 28 May 2006. The pipeline was also a central plot point in the James Bond film The World Is Not Enough (1999). One of the central characters, Elektra King, is responsible for the construction of an oil pipeline through the Caucasus, from the Caspian Sea to the Mediterranean coast of Turkey. Named the “King pipeline” in the film, it is a thinly disguised version of the BTC.
Eti Soda Beypazarı Switchyard is connected to the national electricity grid system with an approximately 11 km total length of 154 kV Energy Transmission Lines established a connection with Beypazarı Substation.
Machinery Manufacturers Industrial Zone

Last Client / Gebze OSB
Location / İzmit, Turkey
Scope of Work / Transmission & Distribution Systems
HIGHWAY & TUNNEL PROJECTS

- ERBIL 60 M. PROTOCOL HIGHWAY AND TUNNEL PROJECT
- TAG MOTORWAY AND TUNNELS PROJECT
Erbil 60 m. Protocol Highway and Tunnel

Last Client / TAŞYAPI İNŞAAT TAAHŞİT SANAYİ VE TİC. A.Ş.
Location / Erbil, Iraq
Scope of Work / Electrical Supply & Infrastructure Systems
TAG Motorway and Tunnels

- Last Client: GENERAL DIRECTORATE OF HIGHWAYS
- Location: Tarsus - Adana - Osmaniye - Gaziantep, Turkey
- Scope of Work:
 - TAG Motorway and Tunnels Electrical - Electromechanical & Various Control Systems
 - Inter-Tunnel Road Lighting / Distribution Building / Distribution Systems
TCDD Ankara-İstanbul High Speed Train Project

Last Client: DHL-ALSIM ALARKO-ÖYD JOINT VENTURE
Location: Ankara - Eskişehir, Turkey
Scope of Work: Transmission and Distribution Systems
NATIONAL ELECTRICITY GRID PROJECTS

- Kesan / Edirne Low & Medium Voltage City Distribution Network
- 380 KV Adapazari Switchyard
- 380 KV Aliaga / Manisa Switchyard
Kesan / Edirne Low & Medium Voltage City Distribution Network

Last Client: TEDAŞ (TURKISH ELECTRICITY DISTRIBUTION COMPANY)
Location: Edirne, Turkey
Scope of Work: City Transmission, Distribution & Control Systems
Last Client / TEİAŞ (TURKISH ELECTRICITY TRANSMISSION COMPANY)
Location / Adapazarı, Turkey
Scope of Work / Transmission Systems

380 kV Adapazarı Dokurcun Transmission Line

Adapazarı Switchyard is connected to the national electricity grid system with an approximately 88 km total length of 380 kV Energy Transmission Lines established between Tepeören and Dokurcun Substations.

Tepeören Substation - Dokurcun Substation = 76 km
Adapazarı Substation - Existing Tepeören/Dokurcun ETL = 6 km
380 kV Aliağa / Manisa Transmission Line

Last Client / TEAŞ (TURKISH ELECTRICITY TRANSMISSION COMPANY)
Location / Manisa, Turkey
Scope of Work / Transmission Systems

380 kV Aliağa/ Manisa Switchyards are connected to the national electricity grid system with an approximately 40 Km length of 380 kV Single Circuit 3 Bundle 1272 MCM Transmission Lines.
COLLECTIVE HOUSING PROJECTS

- ZEKERİYAKÖY ORMAN ADA HOUSING ESTATE PROJECT
- OLYMPIAKENT HOUSING ESTATE PROJECT
Zekeriyaköy Orman Ada Housing Estate Project

Last Client / ECZACIBAŞI GÄRİMENKÜL GELİŞTİRME VE YATIRIM A.Ş.
Location / İstanbul, Turkey
Scope of Work / Transmission & Distribution Systems
Olympiakent Housing Estate Project

Last Client / SOYAK İNŞAAT VE Tic. A.Ş.
Location / İstanbul, Turkey
Scope of Work / Transmission & Distribution Systems
ASSET MANAGEMENT
PROJECTS

775 MW DENIZLI GAS POWER STATION
775 MW Denizli Gas Power Station

Last Client / RWE TURCAS GÜNEY ELEKTRİK ÜRETİM A.Ş.
Metal Construction of Greece S.A. (METKA)

Location / Denizli, Turkey
Scope of Work / Operation of Transmission & Distribution Systems
“Instead of troubling yourself with the past days, think about the future.”

Vehbi Koç
Turkish Businessman
Founder of Koç Group

“Our true mentor in life is science.”

Mustafa Kemal Atatürk
Founder of the Republic of Turkey

“Put yourself in your customer’s place.”

Orison Swett Marden
American spiritual author in the New Thought Movement

“The golden rule for every business man is this: Put yourself in your customer’s place.”

Peter Schutz
German-British author, entrepreneur and CEO of Porsche between 1981 and 1987

“You must be the change you wish to see in the world.”

Mahatma Gandhi
Preeminent leader of Indian nationalism in British-ruled India

“Business opportunities are like buses, there’s always another one coming.”

Richard Branson
British businessman, Founder and Chairman of Virgin Group

“The important thing is not being afraid to take a chance. Remember, the greatest failure is to not try. Once you find something you love to do, be the best at doing it.”

Debbi Fields
American Businesswoman and Author

“Your most unhappy customers are your greatest source of learning.”

Bill Gates
Co-founder and CEO of Microsoft
DID YOU KNOW?: A CONCISE HISTORY OF ENERGY

ENERGY = PROGRESS = CIVILIZATION.

4th century BCE: That the word energy derives from the Greek “energeia”, which possibly appears for the first time in the work Nicomachean Ethics of Aristotle (which means “activity, operation”).

1 A.D.: Chinese first collect and refine petroleum as a fuel for lamps.

200 A.D.: Europeans build wheels in rivers and streams to harness water as energy source.
1000 A.D. Persians build first windmills as energy source.

The earliest known wind power system was designed around 3000 years ago in ancient Persia. Some researchers and historians believe that the origin of the first wind power system is from Sistan, Sistan is a province in the northeast of ancient Persia. Today, it is a region between Iran and Afghanistan.

1600s - 1700s British discover how to cook coal to transform it into hot-burning coke, which becomes a major fuel for 18th, 19th and 20th centuries.

THOMAS YOUNG, an English polymath, was possibly the first to use the term “energy” instead of “vis viva” (living force), in its modern sense.

1820s-1850s First natural gas well is drilled in Fredonia, New York and the very first oil well drilled in Titusville, Pennsylvania.

1830s Based on British Michael Faraday’s discoveries about electromagnetism, the electric generator, motor and relay are developed.

1860 France’s August Mouchout builds first solar energy generator, using a mirror to focus sunlight to make steam.

1880s - 90s Serbian Nikola Tesla invents the alternating current (AC) system of electrical generation, which becomes the standard as nations across the world are wired in late 19th and 20th centuries.

1892 First use of geothermal energy to heat buildings, in Boise, Idaho, USA: The C. W. Moore home in Boise, constructed in 1883, was the first residence in the world known to be heated with direct geothermal energy.

1900s Based on British Michael Faraday’s discoveries about electromagnetism, the electric generator, motor and relay are developed.

1948 The discovery of Gwahar oil field, the world’s largest petroleum deposit, in Saudi Arabia.

Cold War: The first nuclear power plants are built in Obninsk, USSR and in Shippingport, Pennsylvania. Eventually, nuclear plants will supply nearly 20 percent of US electricity.

Global oil production peaks at 70 billion barrel per day (A Daily 10 barrel per person) in 2000s.
<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THERMAL POWER PLANT PROJECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>990 MW SOMA B THERMAL POWER PLANT</td>
<td>ELEKTRIK ÜRETİM A.Ş. (EUAS)</td>
<td>SOMA - MANISA / TURKEY</td>
<td>Turbogenerators Rehabilitation for Unit 1 and 2</td>
</tr>
<tr>
<td>1.2</td>
<td>649 MW MODERN ENERGY GAS POWER PLANT</td>
<td>ELEKTRIK ÜRETİM A.Ş. (EUAS)</td>
<td>TÜMBAKLI - Kİşi / TURKEY</td>
<td>PLANT ENGINEERING (eBoP)</td>
</tr>
<tr>
<td>1.3</td>
<td>575 MW CAN ENERGY GAS POWER PLANT</td>
<td>ELEKTRIK ÜRETİM A.Ş. (EUAS)</td>
<td>ŞİMPANELİ - BURSA / TURKEY</td>
<td>PLANT ENGINEERING (eBoP)</td>
</tr>
<tr>
<td>1.4</td>
<td>489 MW CİHAZLI THERMAL POWER PLANT</td>
<td>ELEKTRIK ÜRETİM A.Ş. (EUAS)</td>
<td>CİHAZLI - ZONGULDA / TURKEY</td>
<td>PLANT ENGINEERING (eBoP)</td>
</tr>
<tr>
<td>1.5</td>
<td>350 MW CİHANOĞLU THERMAL POWER PLANT</td>
<td>ADİSOL ELEKTRİK ÜRETİM VE MADENÇİLİK A.Ş.</td>
<td>ZİNDİRİ / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.6</td>
<td>150 MW BAADRE THERMAL POWER PLANT</td>
<td>DIŞVARPOLEKİS ENERJİ LTD. CO.</td>
<td>BAADRE - DOHUK / IRAQ</td>
<td>Rehabilitation and development of existing Baadri Power Plant’s turbogenerator and turbine with a base load capacity of 150 MW and construction of new fuel tanks for the unit in turnkey basis.</td>
</tr>
<tr>
<td>1.7</td>
<td>1230 MW (Total power output) ZİTES THERMAL POWER PLANT</td>
<td>EREN ELEKTRİK ÜRETİM A.Ş.</td>
<td>ZONGULDA / IRAQ</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.8</td>
<td>943 MW (Total power output) İÇOĞA THERMAL POWER PLANT</td>
<td>İÇOĞA ÇELİK ELEKTRİK ÜRETİM VE SANAYİ A.Ş.</td>
<td>KARABİGA - CANAKKALE / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.9</td>
<td>150 MW BAADRE THERMAL POWER PLANT (PHASE-2)</td>
<td>DIŞVARPOLEKİS ENERJİ LTD. CO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GAS POWER PLANT PROJECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>641 MW (Total Power Output)</td>
<td>LA SOCIÉTÉ ALGERIENNE DE & METAL CONSTRUCTION OF GREECE</td>
<td>Fitrana - M'SILA / ALGERIA</td>
<td>PLAN ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.2</td>
<td>1500 MW EREBIL GAS POWER STATION</td>
<td>MASS GLOBAL FOR INVESTMENT CO.</td>
<td>EREBIL / IRAQ</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.3</td>
<td>933 MW BANDARMA GAS POWER STATION</td>
<td>ELEKTRİK ÜRETİM A.Ş. (EUAS)</td>
<td>BANDARMA - BALIKESİR / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.4</td>
<td>130 MW BURSA GAS POWER STATION</td>
<td>ELEKTRİK ÜRETİM A.Ş. (EUAS)</td>
<td>BURSA / TURKEY</td>
<td>Rehabilitation of Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.5</td>
<td>120 MW KIRKLARELİ GAS POWER STATION</td>
<td>ALTEK ALARKO ELEKTRİK SAN. TİC. İŞL. A.Ş.</td>
<td>KIRKLARELİ / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.6</td>
<td>575 MW CAN ENERJİ GAS POWER STATION</td>
<td>ELEKTRİK ÜRETİM A.Ş.</td>
<td>ÇORLU / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.7</td>
<td>445 MW MODERN ENERGY GAS POWER STATION</td>
<td>MODERN ELEKTRİK ÜRETİMİ OTOPRODÜKTÖR GİREBÜ A.Ş.</td>
<td>ÇORLU / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>775 MW DENİZLİ GAS POWER STATION</td>
<td>İMEKTURAS (KÜNYE ELEKTRİK ÜRETİM A.Ş. METAL CONSTRUCTION OF GREECE A.Ş)</td>
<td>DENİZLİ / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>2.9</td>
<td>1500 MW SÜLEYMANİYE GAS POWER STATION</td>
<td>MASS GLOBAL FOR INVESTMENT CO. (BORUSAN - EnBW)</td>
<td>SÜLEYMANİYE / IRAQ</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
</tbody>
</table>

3 | HYDROELECTRIC POWER PLANT PROJECTS | | | |
3.1	34 MW KOÇLU HYDROELECTRIC POWER PLANT	İKİN ELEKTRİK ÜRETİM VE TİCARET A.Ş. (SANKO)	GİRESUN / TURKEY	Transmission and Distribution Systems	
3.2	63 MW DİYARBAKIR HYDROELECTRIC POWER PLANT	KURŞUNLU ELEKTRİK ÜRETİM A.Ş.	HAKKARİ / TURKEY	PLANT ENGINEERING (eBoP), Transmission and Distribution Systems	
3.3	935 MW (Total power output)	İÇDAS THERMAL POWER PLANT	ESŞİDE EGE ELEKTRİK ÜRETİM A.Ş.	ADANA / TURKEY	Transmission and Distribution Systems
3.4	30 MW ÇAKIKAHYA HYDROELECTRIC POWER PLANT	DIŞVARPOLEKİS ENERJİ ÜRETİM VE TİCARET A.Ş.	TRABZON / TURKEY	PLANT ENGINEERING (eBoP), Transmission and Distribution Systems	
3.5	62,2 MW AKSU HYDROELECTRIC POWER PLANT	BEKRET ELEKTRİK ÜRETİM A.Ş.	DOÇE / TURKEY	Transmission and Distribution Systems	
3.6	320 MW FEDOZİYE SAN HYDROELECTRIC POWER PLANT	YEDOZİYE ELEKTRİK ÜRE. VE TİC. A.Ş. (SANKO)	ADANA / TURKEY	Transmission and Distribution Systems	
3.7	50 MW POKUSLU HYDROELECTRIC POWER PLANT	AKİR ELEKTRİK ÜRETİM VE TİC. A.Ş. (SANKO)	RİZE / TURKEY	Transmission and Distribution Systems	
3.8	33,5 MW ÇEVİZLİK HYDROELECTRIC POWER PLANT	AKİR ELEKTRİK ÜRETİM VE TİC. A.Ş. (SANKO)	RİZE / TURKEY	Transmission and Distribution Systems	
3.9	15 MW FESLİ BAŞ HYDROELECTRIC POWER PLANT	HELİKAS ELEKTRİK ÜRETİM LTD. ŞTİ.	İZMİR / TURKEY	SVAS / TURKEY	Transmission and Distribution Systems
3.10	52 MW ÇEZURE HYDROELECTRIC POWER PLANT	HAKANDEZ ELEKTRİK ÜRETİM SAN.A.Ş (EKİM)	RİZE / TURKEY	Transmission and Distribution Systems	
3.11	23 MW KULP HYDROELECTRIC POWER PLANT	ALDOLAR ELEKTRİK ÜRE. VE TİC. A.Ş. (BOGRUSAN - ELEKTRİK)	DİNDAR / TURKEY	Transmission and Distribution Systems	
3.12	26 MW FEDOZİYE HYDROELECTRIC POWER PLANT	YEDOZİYE ELEKTRİK ÜRETİM VE TİC. A.Ş. (BOGRUSAN - ELEKTRİK)	ERZURUM / TURKEY	Transmission and Distribution Systems	
3.13	17,5 MW AKSU HYDROELECTRIC POWER PLANT	AKİR ELEKTRİK ÜRETİM VE TİC. A.Ş. (BOGRUSAN - ELEKTRİK)	ERZURUM / TURKEY	Transmission and Distribution Systems	
3.14	85 MW MENGE HYDROELECTRIC POWER PLANT	İÇDAS ELEKTRİK ÜRETİM A.Ş. (ENERJİSA - E.ĐİNİ)	ADANA / TURKEY	Transmission and Distribution Systems	
EMTA ENERGY REFERENCE PROJECTS
LAST 10 YEARS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>105 MW KÖPRÜ HYDROELECTRIC POWER PLANT</td>
<td>ENERJISA EREN ELEKTRİK ÜRETİM A.Ş.</td>
<td>ADANA / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.2</td>
<td>181 MW KAYAŞIHYDROELECTRIC POWER PLANT</td>
<td>ENERJISA EREN ELEKTRİK ÜRETİM A.Ş.</td>
<td>ADANA / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.3</td>
<td>13.32 MW ALABUKI I-2 HYDROELECTRIC POWER PLANT</td>
<td>DARıBAŞA ELEKTRİK ÜRETİM SAN. VE TIC. ŞTİ. (DEVAR - OBEA)</td>
<td>ERZURUM / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.4</td>
<td>19 MW YARAN 2 HYDROELECTRIC POWER PLANT</td>
<td>KURŞULU ELEKTRİK ÜRETİM A.Ş.</td>
<td>KARAMAN / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.5</td>
<td>39 MW YARAN 1 HYDROELECTRIC POWER PLANT</td>
<td>KURŞULU ELEKTRİK ÜRETİM A.Ş.</td>
<td>KARAMAN / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.6</td>
<td>17.25 MW ARFAKLI HYDROELECTRIC POWER PLANT</td>
<td>GÖNŞÜ ENEJİ ÜRETİM A.Ş. (ESER)</td>
<td>SIVAS / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.7</td>
<td>7.52 MW KEMİKİNÇI HYDROELECTRIC POWER PLANT</td>
<td>GÖNŞÜ ENEJİ ÜRETİM A.Ş. (ESER)</td>
<td>SIVAS / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.8</td>
<td>5.64 MW SURUŞLU HYDROELECTRIC POWER PLANT</td>
<td>GÖNŞÜ ENEJİ ÜRETİM A.Ş. (ESER)</td>
<td>SIVAS / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.9</td>
<td>8.57 MW KALDERE HYDROELECTRIC POWER PLANT</td>
<td>CALDERE ELEKTRİK ÜRETİM A.Ş.</td>
<td>MOĞOL / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.10</td>
<td>121.5 MW TÖRE HYDROELECTRIC POWER PLANT</td>
<td>BAYTUR KEYİT TAHHİN A.Ş.</td>
<td>GÜMÜŞHANE / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.11</td>
<td>180 MW GÜLSEL GİBE HYDROELECTRIC POWER PLANT</td>
<td>GÜLSEL GİBE / ETHIOPIA</td>
<td>MOĞOL / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.12</td>
<td>30.00 MÖHÜR II HYDROELECTRIC POWER PLANT</td>
<td>MÖHÜR HES ELEKTRİK ÜRETİM VE TİC. A.Ş.</td>
<td>ADIMAN / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
<tr>
<td>1.13</td>
<td>12.39 MÖHÜR III HYDROELECTRIC POWER PLANT</td>
<td>MÖHÜR HES ELEKTRİK ÜRETİM VE TİC. A.Ş.</td>
<td>ADIMAN / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
</tbody>
</table>

5 TRANSMISSION AND DISTRIBUTION SYSTEM PROJECTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>80 KV ALADA SWITCHING- MANISA SWITCHING 3B 1272 MCM SINGLE CIRCUIT ETL - 38 KV</td>
<td>TEİAŞ</td>
<td>MANİSA / TURKEY</td>
<td>Turn-key basis</td>
</tr>
<tr>
<td>5.2</td>
<td>380 KV MANISA SWITCHING - DÜŞÜKÇAMA TRIBUNAL 72 1272 MCM SINGLE CIRCUIT ETL - 38 KV</td>
<td>TEİAŞ</td>
<td>MANİSA / TURKEY</td>
<td>Turn-key basis</td>
</tr>
<tr>
<td>5.3</td>
<td>80 KV ALADA SWITCHING- MANISA SWITCHING 3B 1272 MCM SINGLE CIRCUIT ETL - 38 KV</td>
<td>TEİAŞ</td>
<td>MANİSA / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>380 KV MANISA SWITCHING- DÜŞÜKÇAMA TRIBUNAL 72 1272 MCM SINGLE CIRCUIT ETL - 38 KV</td>
<td>TEİAŞ</td>
<td>MANİSA / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>154 KV VARSUK SWITCHING- Ladı SWITCHING 1272 MCM SINGLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>ANATOLYA / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>26.9 KM MCM SINGLE CIRCUIT ETL - İSİKÇİ Switchyard 3B 1272 MCM SINGLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>30 KV ADEMİZ SWITCHING - KÜÇÜKÇİTLİ 1272 MCM SINGLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>2.5 KM KARATAY Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>EREN TİC. / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>154 KV DÜŞÜKÇAMA TRIBUNAL 72 1272 MCM SINGLE CIRCUIT ETL - 38 KV</td>
<td>TEİAŞ</td>
<td>BATMAN / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>32.00 KM KÜÇÜKÇİTLİ Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>32.00 KM KÜÇÜKÇİTLİ Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>10 KM KÜÇÜKÇİTLİ Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>10 KM KÜÇÜKÇİTLİ Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>10 KM KÜÇÜKÇİTLİ Switching- KÜÇÜKÇİTLİ 1272 MCM DOUBLE CIRCUIT ETL</td>
<td>TEİAŞ</td>
<td>KARAÇAY / TURKEY</td>
<td></td>
</tr>
</tbody>
</table>

4 WIND FARM PROJECTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>328 MW CAPE SCOTT WIND POWER PROJECT</td>
<td>AMEC BLACK & MCDONALD JOINT VENTURE</td>
<td>VANCOUVER ISLAND / CANADA</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>4.2</td>
<td>30 MW EDİNCİK WIND FARM</td>
<td>EDİNCİK ENEJİ ÜRETİM A.Ş.</td>
<td>BANDIRMA - BALIKESİR / TURKEY</td>
<td>PLANT ENGINEERING (eBoP), Transmission and Distribution Systems</td>
</tr>
</tbody>
</table>

6 INDUSTRIAL FACILITY PROJECTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME OF THE PROJECT</th>
<th>CLIENT</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>GAS STORAGE PROJECT</td>
<td>BOTAS A.Ş. / CHINA TIANCHENG ENGINEERING CO.</td>
<td>ASAKAY / TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>NO.</td>
<td>NAME OF THE PROJECT</td>
<td>CLIENT</td>
<td>LOCATION</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>6.2</td>
<td>SÖĞÜTSEN CANBURY TILE FACTORY ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>SÖĞÜTSEN SERAMİK SANAYİ İNŞAAT MAĞAZA İTHALAT IHICAT A.Ş.</td>
<td>CANKIRI/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.3</td>
<td>KÜTAHYA PLATO CEMENT FACTORY ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>PLATO MADENCIKLİK İNŞAAT TÜRÇÇİM CEMENTO SANAYI TİC. A.Ş. ALGURBALAR</td>
<td>KÜTAHYA/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.4</td>
<td>ETİ SIDE BEYAZICI ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>ETİ SIDE İRE. PAZ. VE EL. İRE. TİC. A.Ş. PARK GRUBU</td>
<td>ANKARA/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.5</td>
<td>KARABİGA İÇDAŞ IRAN BLAST FURNACE ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>(ÇDG) CELİK ENERJİ TERSANE VE İLAŞIM SAN. A.Ş.</td>
<td>CANAKKALE/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.6</td>
<td>CNR EXPO ATATÜRK AIRPORT ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>CNR Fİ湫ÇIKLİ A.Ş.</td>
<td>ISTANBUL/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.7</td>
<td>BAKULTRİS-DENİSAN PETROLEUM PIPE LINES PROJECT LOT B 270 km WAVES STATION ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>STREICHER - HAUSSTADT - TAMERMANN - GÜNAYIL - ALARMO ORTAK GİRİŞİM(36%BİTAS)</td>
<td>ERZURUM/ERZİNCAN/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.8</td>
<td>MOE SULEMANANAH & ERBİL CVÜ ELECTRIC GRIDS MY POWER CONNECTION SYSTEMS</td>
<td>MOE [IRAQ]</td>
<td>SÜLEMANANAH - ERBİL/IRAQ</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.9</td>
<td>MERSİN SEAPORT IX. PHASE ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>SENER ARDA</td>
<td>MERSİN/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.10</td>
<td>GALAL TEXTILE FACTORY ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>GALAL TEKSTİL A.Ş.</td>
<td>VALİDA/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.11</td>
<td>NİİS CEMENT FACTORY 3rd GENERATION PLANT ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>NİİS POWER A.Ş. (İGE)</td>
<td>İZMİT/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>6.12</td>
<td>MİCARİ MAKİNE MANUFACTURERS INDUSTRIAL ZONE ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>IGEZE OSB</td>
<td>İZMİT/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>7</td>
<td>TCDD ANKARA - ISTANBUL HIGH SPEED TRAIN PROJECT ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>OHL. - ALSUM ALARMA - CVÜ ORTAK GİRİŞİM (34)</td>
<td>ANKARA-ESKİŞEHİR/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
<tr>
<td>8</td>
<td>HACİBAYRAŞI GAZİDEMİR ODA HOUSING ESTATE ELECTRIC SUPPLY AND INFRASTRUCTURE SYSTEMS</td>
<td>ECCABİRAS GAZİDEMİR ODA LTİŞTİRME VE YATIRIM A.Ş.</td>
<td>ISTANBUL/TURKEY</td>
<td>Transmission and Distribution Systems</td>
</tr>
</tbody>
</table>